### Fuel Cells



# Fuel Cells Technical Goals & Objectives

**Goal**: Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications.







# Fuel Cells Technical Goals & Objectives

#### **Objectives**

- Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of \$45/kW (including hydrogen storage) by 2010.
- Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of \$45/kW by 2010.
- Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at \$750/kW by 2010.
- Develop a fuel cell system for consumer electronics with an energy density of 1,000 W-h/L by 2010.
- Develop a fuel cell system for auxiliary power units (1-3kW) with a specific power of 150 W/kg and a power density of 150 W/L by 2010.



### 2010 FreedomCAR Technology Specific Goals

|                                              | Efficiency                          | Power                      | Energy                  | Cost*                                  | Life     | Weight   |
|----------------------------------------------|-------------------------------------|----------------------------|-------------------------|----------------------------------------|----------|----------|
| Fuel Cell System                             | 60% (hydrogen)<br>45% (w/ reformer) | 325 W/kg<br>220 W/L        |                         | \$45/kW<br>(2010)<br>\$30kW (2015)     |          |          |
| Hydrogen Fuel/<br>Storage/<br>Infrastructure | 70% well to pump                    |                            | 2 kW-h/kg<br>1.1 kW-h/L | \$5/kW-h<br>\$1.25/gal (gas<br>equiv.) |          |          |
| Electric<br>Propulsion                       |                                     | ≥55 kW 18 s<br>30 kW cont. |                         | \$12/kW peak                           | 15 years |          |
| Electric Energy<br>Storage                   |                                     | 25 kW 18 s                 | 300 W-h                 | \$20/kW                                | 15 years |          |
| Materials                                    |                                     |                            |                         |                                        |          | 50% less |
| Engine<br>Powertrain<br>System**             | 45% peak                            |                            |                         | \$30/kW                                | 15 years |          |

<sup>\*</sup> Cost references based on CY2001 dollar values

<sup>\*\*</sup> Meets or exceeds emissions standards.



### Technical Targets

#### See the Draft R&D Plan for a complete set of targets

Targets flow down from end use system specification (vehicle, power system, etc.)



#### Fuel Cell System

Targets for vehicles systems (hydrogen or reformate), stationary systems, APU's, consumer electronics



#### **Sub-System**

Targets for fuel processing sub-system and stack system



#### Component

Air management, sensors, MEA's, membranes, Bipolar Plates, fuel processor reactor zones, etc.

## Fuel Cell R&D Activities are Based on the Critical Challenges

- Cost Lowering the cost of technology to facilitate commercialization, \$45/kW automotive.
- Durability 5,000 hrs for automotive, 40,000 hrs for stationary
- Fuel Processing (start-up) Major Go/No Go Milestone to meet 30 second automotive start-up.
- Air/Thermal/Water Management improved air systems, high temperature membranes, heat rejection and humidification





## Fuel Cells Key Milestones

| Milestone | Description                                                                                  | Quarter<br>(Calendar Year) |
|-----------|----------------------------------------------------------------------------------------------|----------------------------|
| 9         | Go/No Go. Determine whether to continue funding of DMFC R&D for transportation applications. | 3Q, 2003                   |
| 11        | Benchmarking of UTC Fuel Cells atmospheric 50kW system                                       | 4Q, 2003                   |
| 14        | Verify reproducibility of full-size bipolar plates in high-rate manufacturing processes      | 4Q, 2003                   |
| 16        | Fuel Processing Go/No Go Decision                                                            | 2Q, 2004                   |

## FY 04 FreedomCAR and Fuel Initiative (\$272.8 M) FY04-08 Commitment (\$1.7B Total, \$1.2B for Fuel Initiative)



FY 04 Hydrogen Fuel and FreedomCAR Initiatives Hydrogen\* (\$104.2M)+ Fuel Cells (\$77.5M) + Vehicle Technologies (\$91.1M) = \$272.8M

## Fuel Cell Funding

| Program                                | FY 2003 | FY 2004<br>Request | ·   |  |  |  |
|----------------------------------------|---------|--------------------|-----|--|--|--|
| Interior Appropriations in \$ Millions |         |                    |     |  |  |  |
| Transportation Systems                 | \$6.2   | \$7.6              |     |  |  |  |
| Components                             | \$14.9  | \$28.0             |     |  |  |  |
| Fuel Processing                        | \$24.7  | \$19.0             |     |  |  |  |
| Tech Validation                        | \$1.8   | \$15.0             |     |  |  |  |
| Distributed Generation Sys.            | \$7.5   | \$7.5              | · . |  |  |  |
| Technical Support                      | \$0.4   | \$0.4              |     |  |  |  |
| TOTAL                                  | \$55.5  | \$77.5             | 9   |  |  |  |

## Activities Focus on Removing High Risk Technical Barriers

#### FY 2003 Budget = \$55.5M

**Durability Studies** 

**Non-Platinum Catalysis** 



R&D is carried out by industry suppliers, national labs and universities.

#### **Fuel Processing**

Catalytica – Plate Reformer
Nuvera – STAR Fuel Processor
Nuvera – Hi-Q
U. Of Michigan – Microchannel
UTRC – Hydrogen Enhancement
U. Of Kentucky – H2 Enhancement
Air Products – Off-board Reforming
McDermott – Autothermal
ANL
PNNL
LANL

#### **Air Management**

Honeywell – Turbocompressor Mechanology – TIVM UTC Fuel Cell – Blowers TIAX – Hybrid ANL

#### **Membranes & Electrodes**

3M – MEA's and production techniques
3M – Improved Cathodes & Hi-Temp
DeNora/DuPont – Adv. MEA's
UTC Fuel Cells – Improved Cathodes & HiTemp
Superior Micropowders – Low Pt
SWRI/Gore – Pilot production methodes
ANL
LANL

#### **Bipolar Plates/Components**

Porvair Honeywell – sensors UTC Fuel Cells - sensors ORNL

#### **Studies**

TIAX BTI

11

DTI

#### Fuel Cell Solicitations

Stationary & transportation fuel cell solicitation (under evaluation).

Contact: Kathi Epping, 202-586-7425

- Fuel Cell Portable & Auxiliary Power. Open: due date extended to June 26. Contact: John Garbak 202-586-1723
- Vehicle Demonstration, Infrastructure and Co-production: Open: due date August 14. Contact: Sig Gronich, 202-586-1623



### **Future Directions**

- Continue to focus on resolution of fundamental technology barriers and component development
- On-board fuel processing go/no go decision impacts
- Durability improvements and cost reduction through membranes and catalyst development.
- Development of portable power and APU systems technology

Distributed Energy Fuel Cells





# Objectives & Barriers Distributed Energy

#### **OBJECTIVES**

 Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at \$400-750/kW by 2010.

#### **BARRIERS**

- Durability
- Heat Utilization
- Power Electronics
- Start-Up Time





## Targets and Status

Integrated Stationary PEMFC Power Systems

## Operating on Natural Gas or Propane Containing 6 ppm Sulfur

| Characteristics           | Units  | Units 2003<br>status |        | 2010   |  |  |
|---------------------------|--------|----------------------|--------|--------|--|--|
| Small (3-25 kW) Systems   |        |                      |        |        |  |  |
| Electrical Efficiency     | %      | 30                   | 32     | 35     |  |  |
| Cost                      | \$/kWe | 3,000                | 1,500  | 1,000  |  |  |
| Durability                | Hours  | >6,000               | 30,000 | 40,000 |  |  |
| Large (50-250 kW) Systems |        |                      |        |        |  |  |
| Electrical Efficiency     | %      | 30                   | 32     | 40     |  |  |
| Cost                      | \$/kWe | 2,500                | 1,250  | 750    |  |  |
| Durability                | Hours  | 15,000               | 30,000 | 40,000 |  |  |



# Projects Distributed Energy

- Proton Exchange Membrane Fuel Cell Power System on Ethanol
- Caterpillar

 Ultra-thin Composite Membrane for High Temperature Operation in PEMFCs Fuel Cell Energy

 Fuel Cell Distributed Power Package Unit: Fuel Processing Based On Autothermal Cyclic Reforming

**General Electric** 



## Solicitation Status

# Solicitation for "Research and Development for Fuel Cells for Stationary and Automotive Applications"

- Solicitation issued on 24 January 03, closed on 27 Mar 03
- Solicitation focuses stationary fuel cell R, D, and D, including cross-cutting stationary and automotive R&D.
- Selection of up to 20 awards is expected Summer 03
- Awards will have a term up to 5 years
- Total Estimated government funding is approximately \$70M
- Cost Share varies from 20-50%, depending on the topic, based on risk (with the exception Economic Analysis Topic)



### SOLICITATION TOPICS

- Development of Stationary PEM Fuel Cell Power System
- Development of Back-up Fuel Cell Power System
- Development of Materials for High Temperature
   Membranes and PEM Stack Durability for Stationary & Transportation Applications
- Fuel Processing Technology for Stationary Applications
- Stationary Fuel Cell Demonstration
- Platinum Recycling Technology Development
- Non-Precious Metal Catalyst Development
- Water and Thermal Management
- Economic Analysis of PEM Fuel Cell Systems